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ABSTRACT

We show that a one-to-one bounded linear operator T from a separable

Banach space E to a Banach space X is a Gδ-embedding if and only if

every T -null tree in SE has a branch which is a boundedly complete basic

sequence. We then consider the notions of regulators and skipped blocking

decompositions of Banach spaces and show, in a fairly general set up, that

the existence of a regulator is equivalent to that of special skipped blocking

decomposition. As applications, the following results are obtained.

(a) A separable Banach space E has separable dual if and only if every

w∗-null tree in SE∗ has a branch which is a boundedly complete

basic sequence.

(b) A Banach space E with separable dual has the point of continuity

property if and only if every w-null tree in SE has a branch which

is a boundedly complete basic sequence.

We also give examples to show that the tree hypothesis in both the

cases above cannot be replaced in general with the assumption that every

normalized w∗-null (w-null in (b)) sequence has a subsequence which is a

boundedly complete basic sequence.
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1. Introduction

In [2] Bourgain and Rosenthal introduced the following notion of Gδ-embedding.

A bounded linear one-to-one operator T : E → Y from a Banach space E into

a Banach space Y is called a Gδ-embedding if the image T (D) of every norm

closed bounded and separable subset D ⊆ E is a Gδ-set in Y . The usefulness of

the notion of Gδ-embeddings in Banach space theory was illustrated by many

authors, see, for example, [2], [4]–[9].

We will use standard Banach space theoretic notation (see [12]). For example,

the unit ball and the the unit sphere of a Banach space E will be denoted by

BE and SE respectively.

The following result (which we will use in the paper) was established in [8]

by Ghoussoub and Maurey.

(A) A bounded linear one-to-one operator T : E → Y from a Banach space

E into a Banach space Y is a Gδ-embedding if and only if for any δ > 0 and

any δ-separated sequence (yn) ⊆ BE , (that is ‖yi − yj‖ ≥ δ, for i 6= j), the set

{Tyn}
∞
n=1 is not dense in itself.

Let us note that this characterization of Gδ-embeddings, as well as its defi-

nition is of the topological nature. However, it is possible to characterize Gδ-

embeddings in geometrical (in the sense of Banach spaces geometry) terms. For

that we need the following definition [4].

Let T : X → Y be linear bounded operator from a Banach space X into a

Banach space Y . Denote by Σ the set of all finite ordered subsets of the unit

sphere SX of the space X . A function εT : Σ → R
+ is called a T -regulator

for boundedly complete basic sequence (T -RBCBS, for short) if every sequence

(xn) ⊆ SX satisfying ‖Txn+1‖ ≤ εT ({x1, x2, . . . , xn}), is a BCBS.

The following result which is also one of our main tools in this paper, was

proved in [4].

(B) Let T : X → Y be a linear bounded one-to-one operator from a separable

Banach space X into a Banach space Y . Then T is a Gδ-embedding if and only

if there is T -RBCBS.

Clearly, (B) implies (see [7] and [9]):

(C) If T : X → Y is a Gδ-embedding then any T -null sequence {xn} ⊆ SX ,

that is a sequence with the property that limn Txn = 0, contains a subsequence

which is a BCBS.
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However, this weaker property is not enough to characterize Gδ-embeddings

(see Example 4.3 in Section 3).

We now consider a property which is formally intermediate between the ones

described in (B) and (C). First we recall the definition of a tree in a Banach

space.

Let N
<ω denote all non-empty finite ordered subsets of N in its natural partial

order. A tree (xA)A∈N<ω in a Banach space E is a family of elements in E

indexed by N
<ω. A sequence {xAn

}n≥1 is called a branch of the tree if |A1| = 1,

An is an initial segment of An+1 and An+1 \ An is a singleton for any n.

A tree (xA)A∈N<ω ⊆ E is called T -null if every node sequence, that is the

sequence (xA∪{n})
∞
n=1, A ∈ N

<ω, is T -null.

Remark 1.1: If (xn) is a sequence in E, then we can define an obvious tree by

letting xA = xmax A. It is easy to see that the set of all branches of (xA) thus

defined, is the set of all subsequences of (xn).

Various properties of trees and their branches in Banach spaces were studied

in recent years (see, e.g., [15, 17]).

One of our main results is the following tree characterization of Gδ-embed-

dings.

Theorem 1.2: Let E be a separable Banach space and T : E → X a one-

to-one bounded linear operator from E to a Banach space X . Then T is a

Gδ-embedding if and only if every T -null tree in SE has branch which is a

BCBS.

As we mentioned above the “tree-branch” assumption in this theorem can-

not be replaced by the “sequence-subsequence” assumption (see Example 4.3

below).

Next we consider a more general set up for regulators. Let (P ) be a property

which a basic sequence in X may possess. We say (P ) is stable if given a basic

sequence {xn} ⊂ SX with (P ) and basis constant C, any sequence {yn} ⊂ X

with
∑∞

n=1 ‖xn − yn‖ < 1/(2C), is a basic sequence with (P ). For a subspace

Γ ⊂ X∗ we denote BΓ the family of all w-neighbourhoods of the origin in BX

generated by finite subsets A ⊂ Γ, i.e. the neighbourhoods of the form

VA(ε) = {x ∈ BX : |f(x)| < ε, f ∈ A}, A ⊂ Γ, ε > 0.
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A map WP : Σ → BΓ from the set of all finite ordered subsets of SX into BΓ is

called a Γ-regulator of (P)-basic sequences if any normalized sequence {xn} ⊂ X

with

xn+1 ∈ WP ({xi}
n
i=1), n = 1, 2, . . . ,

is a (P)-basic sequence. For Γ = X∗ we write w-regulator instead of X∗-

regulator.

Definition 1.3: Let X be a separable Banach space. For a sequence of sub-

spaces (Xn) of X , with Xi ∩ Xj = {0}, we denote by X [k, l] the subspace

Xk ⊕ Xk+1 ⊕ · · · ⊕ Xl. A sequence of subspaces (Xn) is called a complete

minimal decomposition (CMD, for short) if the following conditions are sat-

isfied.

(i) X = [Xn]∞n=1.

(ii) For each n, Xn ∩ [Xm]m 6=n = {0}.

A CMD (Xn) for X is called a skipped blocking decomposition (SBD,for

short) if every skipped blocking of (Xn), that is, for sequences n(k), m(k), such

that n(k) < m(k)+1 < n(k+1), X [n(k), m(k)]∞k=1, is a Schauder decomposition

for [X [n(k), m(k)]].

We call a sequence (xk), xk ∈ X [n(k), m(k)], n(k) < m(k) + 1 < n(k + 1),

k = 1, 2, . . . a skipped block sequence with respect to (Xn). A SBD (Xn) is

said to be a (P )-SBD if every skipped block sequence is (P )-basic.

If in a SBD (Xk), each Xk is finite dimensional, we call the SBD a skipped

blocking finite dimensional decomposition (SBFDD, for short).

Our next result in Section 2 shows that in a sense the notions of regulator

and SBFDD are equivalent. However, in some cases (e.g., when dealing with

trees) it is more convenient to operate with a regulator.

Proposition 1.4: A separable Banach space E admits a w-regulator of (P)-

basic sequences if and only if it has a (P )-SBFDD.

We now talk about the applications of Theorem 1.2 and Proposition 1.4.

There are two classes of Banach spaces which admit compact Gδ-embeddings.

The first is the class of all separable dual spaces. Recall that a one-to-one

linear bounded operator T : E → X from a Banach space E into a Banach

space X is called a semi-embedding if T (BE) is closed in X. It is trivial that

any separable dual admits a compact semi-embedding and a semi-embedding
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defined on a separable space is a Gδ-embedding. By using Theorem 1.2 we

prove that for a separable Banach space E the dual E∗ is separable if and only

if E∗ has the following property:

(t∗) any w∗-null tree in SE∗ has a branch which is a BCBS.

The second is the class of separable spaces with the (PC) property. Recall

that a Banach space E has the point of continuity property ((PC)-property,

for short) if for every weakly closed bounded set A ⊆ E, the identity map from

(A, w) to (A, ‖·‖) has a point of continuity. The interrelation of Gδ-embeddings

and the (PC) property is contained in the following result (see [8]).

(D) A separable Banach space X has the (PC) property if and only if it admits

a compact Gδ-embedding T : X → Y into some Banach space Y.

In fact, Y may be taken to be `2. Clearly, if w − limn xn = 0, xn ∈ X, n =

1, 2, ..., then limn ‖Txn‖ = 0.

Note that by combining Theorem 1.2 with (D) we can immediately get that

a Banach space E with separable dual has the (PC)-property if and only if

(t) any w-null tree in SE has a branch which is a BCBS.

We, however, give a characterization of separable Banach spaces with the

(PC)-property without the restriction that the dual is separable. And here it

is convenient to use regulators and Proposition 1.4.

We note also that Proposition 1.4 combined with (B) and (D) provides an

alternative proof of the following result in [1, 8].

(E) A separable Banach space has the (PC) property if and only if it admits

a boundedly complete skipped blocking finite dimensional decomposition.

As mentioned above, for any sequence (xn) in E we can define an obvious

tree by letting xA = xmax A. In [14] the following property of separable infinite-

dimensional dual Banach spaces has been established.

(s∗) Any w∗-null normalized sequence of functionals has a boundedly com-

plete basic subsequence (BCBS).

In [8], it was shown that in a separable Banach space with the (PC)-property,

the following holds.

(s) Any w-null normalized sequence has a BCBS.

Of course both of the above results follow from the tree characterizations of

spaces with separable duals and (PC)-spaces. However, it is natural to ask if

property (s∗) (property (s)) alone characterizes Banach spaces with separable

duals ((PC)-property). In Section 3 we give two examples to show that the in

both the cases (t) and (t∗) cannot be replaced by (s) and (s∗). In particular,
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we show that that the (non-separable) dual JT ∗ of the celebrated (separable)

James Tree space JT , introduced in [13] and later studied by Lindenstrauss and

Stegal in [16], has property (s∗). Coming to (s), we prove that the space B∞

constructed in [8], has property (s). Recall that B∗
∞ is separable and B∞ does

not have the (PC)-property.

2. Gδ-embeddings; Regulators and SBFDD

The proof of the following simple lemma is standard and we omit it.

Lemma 2.1: Let X be a Banach space and Γ ⊂ X∗. Suppose X has a Γ-

regulator for (P )-basic sequences. Then every Γ-null tree (xA)A∈[N]<ω in SX

has a branch which is a (P )-basic sequence.

The following is one of our main results.

Theorem 2.2: Let E be a separable Banach space and T : E → X a one-to-one

bounded linear operator from E to a Banach space X . The following assertions

are equivalent.

(a) T is a Gδ-embedding;

(b) there exists a T -RBCBS;

(c) every T -null tree in SE has a branch which is a BCBS.

Proof. (a) ⇔ (b) is proved in [4].

(b) ⇒ (c) Let εT be a T -regulator. Let (xA) be a T -null tree in SE . Since

(x1,n) is a T -null sequence, there exists n1 such that ‖Tx1,n1
‖ < εT ({x1}).

Consider now the sequence (x1,n1,n)n which is T -null. Hence there exists n2

such that ‖Tx1,n1,n2
‖ < εT ({x1, x1,n1

}). Continuing, we get the desired branch.

(c)⇒ (a) Suppose to the contrary, T is not a Gδ-embedding. By [8, Theo-

rem 1.2], there exists δ > 0 and a δ-separated sequence (yn) ⊆ BE , (that is

‖yi − yj‖ ≥ δ, for i 6= j) such that (Tyn) is dense in itself.

We first construct 2 trees: (zA)A∈N<ω in BE and a T -null tree γ = (uA)A∈N<ω

in SE such that

(i) the image (Tza)a∈β of each branch (za)a∈β , is dense in itself;

(ii) for any branch {uk1,...,ki
}∞i=1 we have

‖Tuk1,...,ki
‖ < 2−i, i = 1, 2, . . . ;(1)

(iii) any branch {zk1,...,ki
}∞i=1 is δ-separated sequence in BE ;
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(iv) for any branch {zk1,...,ki
}∞i=1 we have

span{y1, zk1,...,ki
}∞i=1 = span{y1, uk1,...,ki

}∞i=1.(2)

Denote by |A| the cardinality of the (finite) set A. We define the elements zA

and uA by the induction on n = |A|. The elements zA will be chosen from {yi}.

Since (Tyi) is dense in itself, we can find a subsequence (ynk
) ⊂ (yi) such

that

0 < ‖Ty1 − Tynk
‖ ≤ δ2−k−1, k = 1, 2, . . . .

Put

zk = ynk
, uk =

zk − y1

‖zk − y1‖
, k = 1, 2, . . . ,

that is, we defined zA and uA for |A| = 1. Next assume that we already defined

zB and uB for |B| ≤ n, and define zA and uA for |A| = n + 1. Write n + 1 =

2l + j, j = 0, . . . , 2l − 1. Let B be an initial segment of A with |B| = j. Since

{Tyi} is dense in itself, we can find a subsequence (ymk
) ⊂ (yi), ymk

6= zC , for

every initial segment C of A, and for any k, and such that

0 < ‖TzB − Tymk
‖ ≤ δ2−k−n−1 k = 1, 2, . . . .

Now, if t is the last element of A we put

zA = ymt
, uA =

zA − zB

‖zA − zB‖
.

A straightforward verification shows that (i)–(iv) are satisfied.

By our assumption in (c), γ has a branch β = {uk1,...,kn
}∞n=1 which is a BCBS.

Put

xn = uk1,...,kn
, vn = zk1,...,kn

, n = 1, 2, . . . , x0 = y1, Y = [xn]∞n=0.

If x0 ∈ [xn]∞n=1 then {xn}
∞
n=1 is a boundedly complete basis of Y. If x0 6∈ [xn]∞n=1

then {xn}
∞
n=0 is a boundedly complete basis of Y. The next part of the arguments

in both cases is the same. So we assume without loss of generality that {xn}
∞
n=1

is a (boundedly complete) basis of Y.

Claim: T |Y is a Gδ-embedding of Y into X .

We first show how to finish the proof with the help of the Claim, and then

prove it. By (iii) and (iv) {vn} ⊂ BY is a δ-separated sequence. However,

by (i) the image {Tvn} is dense in itself. This is a contradiction to T |Y is a

Gδ-embedding (see [8, Theorem 1.2]). Thus (c) ⇒ (a) is proved.
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It remains to prove the claim. Let us introduce a new norm on Y by

‖|y‖| = sup
n

{∥

∥

∥

∥

n
∑

1

aixi

∥

∥

∥

∥

: y =
∑

aixi

}

.

Clearly ‖| · ‖| is equivalent to the original norm. Denote by V the unit ball in

the norm ‖| · ‖|. We show that the image TV is closed in X .

Let Tum → v where um ∈ V . Writing um =
∑

am
i xi, without loss of

generality, we assume that limm am
i = ai for each i. It is straightforward to

check that supn ‖
∑n

i aixi‖ ≤ 1. Since (xn) is BCBS,
∑

aixi converges to some

u ∈ V . Given ε we choose n such that
∑∞

n+1 ‖Txi‖ < ε/16. We then choose m

such that for all i = 1, . . . , n, |am
i − ai| < ε/(4n‖T ‖). Thus we have,

‖Tum − Tu‖ ≤

∥

∥

∥

∥

n
∑

1

(am
i − ai)Txi

∥

∥

∥

∥

+

∥

∥

∥

∥

∞
∑

n+1

(am
i − ai)Txi

∥

∥

∥

∥

< ε.

Hence, Tum → Tu, u ∈ V, v = Tu. Therefore, v ∈ TV . This shows T |Y is

a semi-embedding of Y in X and since Y is separable, T is a Gδ-embedding.

This proves the claim. The proof of the theorem is complete.

Our next result shows the equivalence of existence of regulators and that of

special skipped blocking decompositions in a fairly general set up.

Proposition 2.3: Let X be a separable Banach space and (P ) some stable

property a basic sequence may possess. The following assertions are equivalent.

(a) There is a separable subspace Γ ⊂ X∗ such that X has a Γ-regulator WP

for (P )-basic sequences;

(b) X has a w-regulator WP for (P )-basic sequences.

(c) X has a (P )-SBFDD.

Proof. (a) ⇒ (b) is trivial.

(b) ⇒ (c) For ε > 0 and A = {f1, f2, . . . , fn} a finite subset of SX∗ , denote

VA(ε) = {x ∈ BX : |fi(x)| < ε, i = 1, 2, . . . , k}.

Fix a sequence

{εk}, 0 < εk < 1/6, k = 1, 2, . . . ,

∞
∏

k=1

(1 + εk) < 21/4,

∞
∑

k=1

εk < 1/4.

Let (xn) ⊆ SX be a dense sequence.
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Put X1 = [x1]. We can write X = X1 ⊕ E0 where E0 = D1> for some

finite set D1 ⊆ SX∗ . Let T1 = {z1
1 , z

1
2 , . . . , z

1
j1
} be a ε1/2-net in SX1

. For each

i = 1, . . . , j1, find δ1
i > 0 and finite subset A1

i ⊆ SX∗ , such that

WP ({z1
i }) = VA1

i
(δ1

i ), i = 1, . . . , j1.

Let F1 ⊆ SX∗ be a finite (1 + ε1)
−1-norming set for X1, that is,

‖x‖ ≤ (1 + ε1) sup{f(x) : f ∈ F1}, x ∈ X1.

Now let x2 = u2 + v2 where u2 ∈ X1 and v2 ∈ E0. If v2 6= 0 pick y∗
2 ∈ SX∗

with y∗
2(v2) 6= 0. If v2 = 0 just put y∗

2 = 0. Put

B1 =

(

⋃

i

A1
i

)

∪ D1 ∪ {y∗
2} ∪ F1, E1 = B>

1 .

Let X2 be a finite dimensional subspace of E0 containing v2 such that E0 =

X2 ⊕ E1. Thus X = X1 ⊕ X2 ⊕ E1.

Put η2 = 1
2 min{ε2, δ

1
i : i = 1, . . . , j1} and let T2 = {z2

1 , z
2
2 , . . . , z2

j2} be a

η2-net in SX1⊕X2
.

Next for each k, 1 ≤ k ≤ j2, and for each pair (i, k), 1 ≤ i ≤ j1, 1 ≤ k ≤ j2,

find

δ2
k > 0, δ2

ik > 0,

and finite subsets

A2
k ⊂ SX∗ , A2

ik ⊂ SX∗ ,

such that

WP ({z2
k}) = VA2

k
(δ2

k), WP ({z1
i , z2

k}) = VA2
ik

(δ2
ik).

Let F2 ⊆ SX∗ be a finite (1 + ε2)
−1-norming set for X1 ⊕ X2.

Write x3 = u3 +v3 where u3 ∈ X1⊕X2 and v3 ∈ E1. If v3 6= 0 pick y∗
3 ∈ SX∗

with y∗
3(v3) 6= 0. If v3 = 0 just put y∗

3 = 0.

Put

B2 = B1 ∪
(

⋃

i

A2
i

)

∪
(

⋃

ik

A2
ik

)

∪ {y∗
3} ∪ F2, E2 = B>

2 .

Let X3 be a finite dimensional subspace of E1 containing v3 such that E1 =

X3 ⊕ E2. Thus X = X1 ⊕ X2 ⊕ X3 ⊕ E2.

Proceeding inductively, we construct:

(1) a sequence of finite-dimensional subspaces Xk ⊂ X and decreasing se-

quence of finite-codimensional subspaces Ek ⊂ X, k = 1, 2, . . . , such

that
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(i) xn ∈ X1 ⊕ · · · ⊕ Xn, En−1 = Xn+1 ⊕ En, X = X1 ⊕ · · · ⊕ Xn ⊕

En−1, n = 1, 2, . . . ,

and

(2) an increasing sequence Bk ⊂ SX∗ , k = 1, 2, . . . , of finite sets, and a

sequence Tn = {zn
i }

jn

i=1 ⊂ SX1⊕···⊕Xn
, n = 1, 2, . . . , such that

(ii) Ek = B>
k , k = 1, 2, . . .;

(iii) there is a subset Fn ⊂ Bn which (1 + εn)−1 norms X1 ⊕ · · · ⊕

Xn, n = 1, 2, . . .;

(iv) for each k ≤ n and each collection (i1, . . . , ik), 1 ≤ i1 ≤ j1, . . . , 1 ≤

ik ≤ jk, there exist δn
i1,...,ik

> 0 and finite sets An
i1,...,ik

⊆ Bn such

that

VAn
i1,...,ik

(δn
i1,...,ik

) = WP ({z1
i1 , . . . , z

k
ik
})

(v) Tn is a ηn-net in SX1⊕···⊕Xn
for

ηn =
1

2
min{εn, δn−1

i1,...,ik
, 1 ≤ i1 ≤ j1, . . . , 1 ≤ ik ≤ jk, k ≤ n − 1}.

From (i) it follows that Xn∩ [Xm]m 6=n = {0}, and X = [Xn]∞n=1. Thus (Xn) is a

CMD. Next we need to verify the SBD-condition of Definition 1.3. For simplicity

we consider the case: n(k) = m(k) = 2k, k = 1, 2, . . . . The verification for the

general case is similar. So let yk ∈ SX2k
. We need to check that (yk) is a

(P )-basic sequence. By (v), there exists z2k
ik

∈ T2k such that ‖yk − z2k
ik
‖ ≤ η2k,

k = 1, 2, . . .. In particular,

∞
∑

k=1

‖yk − z2k
ik
‖ < 1/4.(3)

Since by (i), X2k⊆E2k−2 and by (ii), E2k−2 =B>
2k−2, it follows that f(yk)=0

for each f ∈ B2k−2. Hence

|f(z2k
ik

)| ≤ η2k−2, f ∈ B2k−2, k = 1, 2, . . . .

In particular,

|f(z2k
ik

)| ≤ ε2k−2, f ∈ F2k−2, k = 1, 2, . . . .(4)

|f(z2k
ik

)| < δ2k−2
i1,...,i2k−2

, f ∈ A2k−2
i1,...,i2k−2

, k = 1, 2, . . . .(5)

We claim that {z2k
ik
} is a basic sequence with basis constant < 2. Fix a finite

set of numbers {ai}
n+1
k=1 and denote Sn =

∑n
k=1 akz2k

ik
and Sn+1 =

∑n+1
k=1 akz2k

ik
.
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By using (iii) find f ∈ Fn with ‖Sn‖ ≤ (1 + εn)|f(Sn)|. Next we write

‖Sn‖ ≤ (1 + εn)|f(Sn+1) − f(an+1z
2n+2
in+1

)| ≤ (1 + εn)(‖Sn+1‖ + εn|an+1|)

≤ (1 + εn)(‖Sn+1‖ + εn(‖Sn+1‖ + ‖Sn‖)).

Therefore,

‖Sn‖ ≤
(1 + εn)2

1 − εn(1 + εn)
‖Sn+1‖ ≤ (1 + εn)4‖Sn+1‖,

where we used that εn ∈ (0, 1/6). Hence {z2k
ik
} is a basic sequence with basis

constant C ≤
∏∞

n=1(1 + εn)4 ≤ 2.

Next from (iv) and (5) it follows that {z2k
ik
} has property (P ). Finally from

(3) we conclude that {yk} is a (P )-basic sequence.

(c) ⇒ (a) Let (Xk)k≥1 be a (P )-SBFDD for X . A standard argument shows

that there is a constant C ≥ 1 such that every skipped block sequence of

(Xk)k≥1 is a (P )-basic sequence with basis constant at most C. Fix εk > 0,
∑

εk < 1/(2C).

We define a regulator WP ({xi}
k
i=1) for (P )-basic sequences inductively. Start

with k = 1. Fix x ∈ SX . Put p0 = −1 and find p1 and y ∈ S[Xi]
p1
p0+2

such

that x = y + z where ‖z‖ < ε/2. We take Y1 = [Xi]i≥p1+2. Then Y1 is a finite

codimensional subspace of X . Let A1 ⊆ SY ⊥
1

be a finite ε1/42-net in SY ⊥
1

. We

define

WP ({x1}) = VA1
(ε1/4).

This defines W on each one point subset of SX .

Suppose WP has been defined for all k-point subsets of SX , k ≥ 1 and

{x1, x2, . . . , xk+1} ⊆ SX such that

WP ({x1, x2, . . . , xk}) = VAk
(εk/4k),

where Ak is a finite εk/4k+1-net in SY ⊥
k

, Yk = [Xi]i≥pk+2.

If xk+1 6∈ WP ({x1, x2, . . . , xk}) we define

WP ({x1, x2, . . . , xk+1}) = WP ({x1, x2, . . . , xk}).

If xk+1 ∈ WP ({x1, x2, . . . , xk}) then for all f ∈ Ak, |f(xk+1)| < εk/4k.

Since Ak is a εk/4k+1-net in SY ⊥
k

, we can write xk+1 = s + t where s ∈ SYk

and ‖t‖ < εk/4k. Next we choose pk+1 > pk + 2 and yk+1 ∈ S
[Xk]

pk+1

pk+2

such

that s = yk+1 + z where ‖z‖ < εk/4k. Note that ‖xk+1 − yk+1‖ < εk/2k.
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Put Yk+1 = [Xk]k≥pk+1+2. Yk+1 is a finite codimensional subspace of X . Let

Ak+1 ⊆ SY ⊥
k+1

be a finite εk+1/4k+2-net in SY ⊥
k+1

. We define

WP ({x1, x2, . . . , xk+1}) = VAk+1

(εk+1

4k+1

)

.

Put Γ = cl span
⋃

k Ak and we check that WP is a regulator for (P )-basic

sequences. To this end, let (xk) ⊆ SX satisfy xk+1 ∈ WP ({x1, x2, . . . , xk}).

For each k, there exists yk ∈ S[Xj ]
pk
pk−1+2

such that ‖xk − yk‖ < εk/2k. Hence
∑

‖xk − yk‖ <
∑

εk/2k < 1/(2C). By the construction (yk) is a skipped block

sequence of (Xk)k≥1, and hence (yk) is a (P )-basic sequence of basis constant

at most C. By the stability of (P ) it follows that (xk) is (P )-basic sequence as

well. This completes the proof.

3. Applications.

The first application of Theorem 2.2 is a characterization of separable dual

spaces among duals of separable spaces. We start with a proposition which is

essentially proved in [4].

Proposition 3.1: Let a Banach space E admit a compact semi-embedding

T : E → X which is a Gδ-embedding. Then E is isometric to a separable dual

space.

Proof. Let K = T (BE). Then K is a compact symmetric convex set. Let

Y = A0(K) be the space of all affine continuous functions on K vanishing at

the origin with sup-norm. A standard argument shows that E is isometric to

Y ∗. The rest of the proof runs along the lines of the proof of Theorem 3, (2)⇒

(3), in [4]. The proof is complete.

Theorem 3.2: Let E be a separable Banach space. The following assertions

are equivalent.

(a) E∗ is separable.

(b) There exists a w∗-RBCBS for E∗.

(c) E∗ has property (t∗).

Proof. (a) ⇔ (b) is proved in [4, Theorem 3].

(b) ⇒ (c) follows from Lemma 2.1.
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(c) ⇒ (a) Let A : `2 → E be a compact operator with dense range. Denote

T = A∗ : E∗ → `2. It is clear that T is a compact semi-embedding and every

normalized T -null tree is w∗-null. Therefore from Theorem 2.2, (c) ⇒ (a),

it follows that T is a Gδ-embedding of E∗ into `2 (recall that the notion of

Gδ-embedding is separably defined). Apply Proposition 3.1 to complete the

proof.

We now consider (PC)-spaces. The following theorem provides a characteri-

zation of separable Banach spaces with the (PC) property in terms of the trees

in the unit sphere. This also provides an alternative proof of the result (E)

from the introduction.

Theorem 3.3: Let E be a separable Banach space. The following assertions

are equivalent.

(a) E has the (PC)-property.

(b) There exists a separable subspace Γ ⊆ E∗ such that E has a WΓ-RBCBS.

(c) E has a BCSBFDD (Xk)k≥1.

(d) There exists a separable subspace Γ ⊆ E∗ such that every Γ-null tree in SE

has a branch which is BCBS.

Proof. (a) ⇔ (b) is formulated in the short note [5] without proof. We give a

proof here for the sake of completeness.

(a) ⇒ (b) Since E has the (PC)-property it follows [8] that there is a compact

Gδ-embedding T : E → l2. We take Γ = T ∗l2. Then Γ is separable. By [4] (see

Theorem 2.2, (a)⇔ (b)), there exists a T -RBCBS εT on E.

We define a WΓ-RBCBS as follows. Let x ∈ SE . Since T ∗BX∗ is compact

there is a finite εT ({x})/2-net {f1
i }

n1

i=1 in T ∗BX∗ . Define

WΓ({x}) = {y ∈ BE : |f1
i (y)| < εT ({x})/2, i = 1, . . . , n1}.

It is easily seen that for any y ∈ WΓ({x}), we have ‖Ty‖ < εT ({x}).

Now let x1, x2 ∈ SE . By the compactness of T ∗BX∗ there is a εT ({x1, x2})/2-

net {f2
i }

n2

i=1 in T ∗BX∗ . Define

WΓ({x1, x2}) = {y ∈ BE : |f2
i (y)| < εT ({x1, x2})/2, i = 1, . . . , n2}.

The same argument as above shows that if y ∈ WΓ({x1, x2}), then ‖Ty‖ <

εT ({x1, x2}).

Continuing, we get the desired regulator WΓ.
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(b) ⇒ (a) Let Γ ⊂ E∗ be a separable subspace and WΓ be a RBCBS. It is

easily seen that Γ is total. Let K ⊂ Γ be a norm-compact convex symmetric

subset such that cl spanK = Γ. Without loss of generality we can assume that

for {xi}
n
1 ⊆ SE , there exists ε = ε({xi}

n
i ) such that

WΓ({xi}
n
i=1) = {x ∈ BE : |fj(x)| < ε, fj ∈ K, j = 1, . . . , m}, {xi}

n
i=1 ⊂ SE .

Next define a new norm on the space E as follows

|||x||| = max{|g(x)| : g ∈ K}.

Let X be the completion of the space E with norm ||| · |||, and T : E → X be a

natural (one-to-one) embedding. Clearly, T ∗(BX∗) = K. Now we define a map

εT ({xi}
n
i=1) = ε, where ε has come from (6). It is not difficult to see that εT

is a T -RBCBS. By [4] (see Theorem 2.2, (b) ⇔ (a)) we conclude that T is a

Gδ-embedding. Therefore, E admits a compact Gδ-embedding. By [8] E has

the (PC)-property.

The equivalence of (b) and (c) follows from Proposition 2.3.

(b) ⇒ (d) follows from Lemma 2.1.

(d) ⇒(a) We start as in the beginning of the proof of (b) ⇒ (a), and con-

struct the space X and the compact one-to-one operator T : E → X such that

cl spanT ∗(X∗) = Γ, (the condition (d) guarantees the totality of Γ). Form (d)

it follows that any T -null tree has a branch which is BCBS. By Theorem 2.2,

(c) ⇒ (a), we get that T is a Gδ-embedding. By the result from [8] mentioned

in the introduction we conclude that E has the (PC)-property.

Let (Xk)k≥1 be a CMD for a Banach space X . (Xk)k≥1 is said to be shrink-

ing if for every f ∈ X∗, limn ‖f |[Xk]k≥n
0‖ = 0. By [19, Theorem 4.1], X has

a shrinking SBFDD if and only if X∗ is separable. Also, it was shown in [19]

that a SBFDD, which is skipped-shrinking, meaning that every skipped block

sequence generates a shrinking basic sequence, is in fact, a shrinking SBFDD.

Corollary 3.4: Let E∗ be separable. The following assertions are equivalent.

(a) E has the (PC)-property.

(b) E has a w-RBCBS.

(c) E has a w-regulator for shrinking boundedly complete basic sequences.

(d) E has a shrinking BCSBFDD (Xk)k≥1.

(e) E has property (t).
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Proof. Taking Γ = X∗, in Theorem 3.3, (a) ⇒(b) follows.

(b) ⇒(c) Let W be a w-RBCBS. We define a regulator W1 for boundedly

complete shrinking basic sequences.

Let (fn) be a dense sequence in SE∗ . Take εn ↓ 0. Define W1 : Σ → B

as W1({x1, x2, . . . , xn}) = W ({x1, x2, . . . , xn}) ∩ Vf1,f2,...,fn
(εn). If (xn) ⊆ SE

satisfies xn+1 ∈ W1({{x1, x2, . . . , xn}) then xn+1 ∈ W ({x1, x2, . . . , xn}) and

hence it is BCBS. Also xn+1 ∈ Vf1,f2,...,fn
(εn). By the density of (fn) it follows

that for every f ∈ E∗, ‖f‖[xk]k≥n+1
→ 0. Thus (xn) is shrinking.

(c) ⇒(d) By Proposition 2.3 it follows that E has a skipped shrinking BCS-

BFDD (Xk)k≥1, that is, every skipped block sequence of (Xk)k≥1 generates a

shrinking and BCBS. It was noted in [19] that an SBFDD, which is skipped-

shrinking, is in fact, a shrinking SBFDD.

(d) ⇒(e) follows from Lemma 2.1; (e) ⇒(a) follows from Theorem 3.3.

Remark 3.5: By [3, 19] the Banach spaces with the (PC)-property and separable

dual form the class of Banach spaces such that the unit ball is Polish in the

weak topology. Thus Corollary 3.4 gives a tree characterization of this class of

Banach spaces among the spaces with separable dual.

4. Property (s) and (s∗)

In this section we prove that the properties (t) and (t∗) are indeed stronger than

properties (s) and (s∗) and the tree hypothesis in Theorem 2.2, Theorem 3.2,

and Corollary 3.4 cannot be in general weakened to the sequence hypothesis.

We start with general results which we then apply to the space JT.

Theorem 4.1: Let X be a separable Banach space satisfying the following

conditions:

(a) X has the (PC)-property.

(b) X∗ is separable.

(c) X∗∗/X is reflexive.

Then X∗∗ has property (s∗).

The proof of the following lemma follows from a standard argument.

Lemma 4.2: Let L be a Banach space and E ⊆ L such that E = [Xk]k≥1 where

(Xk) is a CMD of E with dim Xk < ∞, k ≥ 1 and let q be the quotient map

from L to L/E. Let Y be a finite dimensional subspace of L. For each n, let
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Zn ⊆ E be the finite dimensional subspace defined by Zn = [Xk]nk=1. Then

given any 0 < ε < 1, there exists an integer s such that for any y ∈ Y , one can

find m ∈ Zs satisfying

‖y + m‖ ≤ (1 + ε)‖qy‖ + ε‖y‖.

Proof of Theorem 4.1: Let (yn) ⊆ SX∗∗ be w∗-null. We need to find a subse-

quence of (yn) which is BCBS.

Denote by q the quotient map from X∗∗ to X∗∗/X . We will choose the

required subsequence of (yn) in the following two steps.

Step 1: We choose a subsequence (yki
) of (yn) to satisfy the following property

(∗) Let γi > 0, γi ↓ be such that
∑

γi converges. Let (ai) be a bounded

sequence of reals. Suppose for ε > 0 and C > 0 we have zp =
∑np

i=np−1+1 aiyki
satisfies, for all p, C > ‖zp‖ > ε and ‖qz‖ ≤ γp2

−p.

Then there exists d ≥ 1 such that {zp}
∞
p=d is a BCBS.

Since X has the (PC)-property it follows by Theorem 3.3, that there exists a

boundedly complete SBFDD (Xi) for X . Let us denote Nk = [Xi]i6=k
⊥

. Then

each Nk is a finite dimensional subspace of X∗ and so is Fn = [Nk]nk=1. Note

that F>
n = [Xi]

∞
i=n+1. We take Zn = [Xk]nk=1.

By repeated use of Lemma 4.2 we find a subsequence (ykn
) and two strictly

increasing sequences (sn), (tn) of natural numbers satisfying the following con-

ditions:

‖ykn
|Ftn+1

‖ < 2−nγn;(6)

if y ∈ Yp = [yk1
, · · · , ykp

], there exists m ∈ Zsp
such that

‖y + m‖ < (1 + γp)‖qy‖ + γp‖y‖;
(7)

for each m ∈ Zsp
there exists m̄ ∈ [Xj]

tp

tp−1+2 such that(8)

‖m + m̄‖ < (1 + γp)dist(m, [Xj ]
∞
tp−1+2) + γp‖m‖.

Since zp ∈ Ynp
, by (7) there exists mp ∈ Zsnp

such that ‖zp + mp‖ ≤

(1 + γnp
)‖qzp‖ + γnp

‖zp‖. Since ‖qzp‖ ≤ γp2
−p, we can find p large enough

such that

‖zp + mp‖ < γp.(9)



Vol. 167, 2008 TREE CHARACTERIZATIONS OF Gδ-EMBEDDINGS 43

By (6), for each r, ‖yknp−1+r
|Ftnp−1+1

‖ < 2−(np−1+r)γnp−1+1. Hence,

‖zp|Ftnp−1+1
‖ ≤

np
∑

i=np−1+1

|ai|‖yki
|Ftnp−1

+1
‖.

Since (ai) is bounded, choosing p large enough, we can have ‖zp|Ftnp−1+1
‖ ≤ γp.

By (9), it follows that ‖mp|Ftnp−1+1
‖ ≤ 2γp. This implies

dist(mp, [Xj ]
∞
i=tnp−1

+2) < 2γp.

We now choose, by (8), m̄p ∈ [Xj]
tnp

i=tnp−1
+2 such that

‖mp + m̄p‖ < (1 + γnp
)dist(mp, [Xj ]

∞
tnp−1+2

) + γnp
‖mp‖

< 2(1 + γnp
)γp + γnp

(C + γp) < (C + 5)γp.

Clearly, (m̄p) is a skipped block sequence of (Xj) and thus a BCBS. Since
∑

γp

converges, there exists t such that (mp)p≥t is a BCBS. But ‖zp +mp‖ ≤ γp and

hence there exists d such that (zp)p≥d is a BCBS.

Step 2: Let (ykn
) be the subsequence obtained from Step 1. To simplify nota-

tion, we denote this subsequence by (yk). Let us observe that (∗) holds for any

subsequence of (yk) (by putting some ai = 0, if necessary).

Recall that (yk) is a normalized w∗-null sequence in X∗∗. By a well-known

result we can choose a subsequence, call it (yk) again, such that (yk) is basic,

with basic constant C1.

The following two cases can occur.

Case 1: Suppose for some subsequence (ykm
), ‖qykm

‖ → 0. Since X is a sepa-

rable Banach space with the (PC)-property, it follows from [8] (see Theorem 3.3)

that (ykm
) has subsequence which is a BCBS.

Case 2: infk ‖qyk‖ ≥ α. Without loss of generality and passing to a subse-

quence if necessary, we assume that there exists h ∈ X⊥, ‖h‖ = 1 and some

α > 0 such that |h(yk) − α| < 2−k. Since X∗∗/X is reflexive, it follows that

for some subsequence, which we denote by (yk) again, there exists z ∈ X∗∗

qyk
w
→ qz.

Suppose (ak) is such that supn ‖
∑n

1 akyk‖ ≤ M for some M . Then

supn |h(
∑n

1 akyk)| ≤ M and since |h(yk)−α| ≤ 2−k, we get supn |
∑n

1 ak| < ∞.

Hence there exists (nk) such that
∑nk

1 ak converges, to say, a.
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We consider the following two cases.

Case (a): ‖qyk − qz‖ → 0.

In this case, it is straightforward to observe that
∑nk

1 akqyk → qu for some

u ∈ X∗∗.

Case (b): ‖qyk − qz‖ > ε for some ε > 0. Since X∗∗/X is reflexive, we assume

without loss of generality that (q(yk − z)) is a BCBS.

Writing
∑nk

k=1 akqyk =
∑nk

k=1 akq(yk−z)+(
∑nk

k=1 ak)qz and using the bound-

ed completeness of (q(yk − z)), it follows that
∑nk

k=1 akqyk converges.

Thus in both cases, we obtain, for some suitable subsequence of (yk), that

there exists (nk) such that
∑nk

k=1 akqyk converges, whenever

sup
n

‖

n
∑

1

akyk‖ ≤ ∞.

We claim (yk) is a BCBS.

To show this, observe that, since (yk) is basic, it is enough to show that there

exists (nk) such that
∑nk

i=1 aiyi converges whenever supn ‖
∑n

1 aiyi‖ ≤ M for

some M . Thus assume on the contrary, that
∑nk

i=1 aiyi does not converge for

any sequence (nk). Note that by the consideration above, there exists (nk)

such that
∑nk

i=1 aiq(yi) converges. Let γp > 0 be such that
∑

γp < ∞. Then

there exists ε > 0 and a subsequence (nkp
) such that ‖

∑nkp+1

nkp+1 aiyi‖ ≥ ε but

‖q(
∑nkp+1

nkp+1 aiyi)‖ ≤ γp2
−p. Observe that ‖

∑nkp+1

nkp +1 aiyi‖ ≤ 2M . Since (yk) is a

basic sequence with basis constant C1, it follows that |ai| < 4MC1 and hence

is bounded.

Taking zp =
∑nkp+1

nkp+1 aiyi and C = 2M , it follows from (∗) that there exists

d such that (z)p≥d is a BCBS. However supn ‖
∑n

p=d zp‖ ≤ 2M . Thus
∑

p≥d zp

converges. This contradicts ‖zp‖ ≥ ε.

The proof is complete.

Example 4.3: Consider the James tree space JT . It is a separable dual space

with non-separable dual JT ∗. Denoting the pre-dual of JT by B it is known

that B has the (PC)-property (see [1]and [3]), and JT ∗/B is isomorphic to `2(Γ)

for some uncountable set Γ (see [16]). It follows from Theorem 4.1 that JT ∗

has property (s∗). Therefore the space JT ∗ shows that the property (s∗) is not

enough for a dual space to be separable. Next let A : l2 → JT be a one-to-one
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linear compact operator with dense range. Put T1 = A∗ : JT ∗ → l2. Since JT ∗

is not separable it follows from Proposition 3.1 that T1 is not a Gδ-embedding.

Since the notion of Gδ-embedding is separably defined, it follows that there is

a separable subspace E ⊂ JT ∗ such that the restriction T = T1|E is not a Gδ-

embedding. However, by using the (s∗) property of JT ∗ it is easy to see that

any sequence {xn} ⊂ SE with limn Txn = 0 contains a subsequence which is

BCBS. This shows that the tree hypothesis in Theorem 2.2 cannot be weakened

to the sequence hypothesis.

Example 4.4: An example of a separable Banach space E with separable dual

such that E fails the (PC)-property but has property (s) is the space B∞

constructed in [8]. It is known that JT∞ = B∗
∞ is separable and B∞ fails the

(PC)-property (see [10, 11]). In the following proposition we prove B∞ has

property (s).

Proposition 4.5: B∞ has property (s).

Proof. We will use the following properties of the space B∞ (see [8, 9] for

details).

There exists a sequence of Banach spaces (Xk), each isometric to `2 such that

(i) (Xk) is a (complemented) Schauder decomposition of B∞.

(ii) (Xk) is a BCSBD of B∞.

Let Pn : X →
∑n

k=1 ⊕Xk denote the projection on the first n components of
∑

k=1 ⊕Xk. Since (Xk) is a Schauder decomposition, we have supn ‖Pn‖ < c

for some c > 0.

Let (xi) ⊆ SB∞
be a w-null sequence. For each n, we have (Pnxi)i≥1 is

weakly null. We consider the following two cases.

Case 1: For infinitely many n, limi ‖Pnxi‖ = 0. Choose n1 and i1 such that

‖Pn1
xi1‖ < c−14−2. We can write xi1 = s1 + t1 where s1 ∈ [Xk]n1

k=1 and t1 ∈

[Xk]∞k=n1+1, ‖s1‖ = ‖xi1 − t1‖ < c−14−2. There exists m1 and y1 ∈ [Xk]m1

k=n1+1

such that ‖t1 − y1‖ < c−14−1. Note that ‖xi1 − y1‖ < c−14−1.

Choose n2 > m1 + 1 and i2 such that ‖Pn2
xi2‖ < c−14−3. We can write

xi2 = s2 + t2 where s2 ∈ [Xk]n2

k=1 and t2 ∈ [Xk]∞k=n2+1, ‖s2‖ = ‖xi2 − t2‖ <

c−14−3. There exists m2 and y2 ∈ [Xk]m2

k=n2+1 such that ‖t2 − y2‖ < c−14−2.

Thus ‖xi2 − y2‖ < c−14−2.
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Continuing, we obtain a subsequence (xik
) of (xi) and yk ∈ [Xk]mk

k=nk+1,

nk + 1 ≤ mk < nk+1 such that
∑∞

k ‖xik
− yk‖ < 1/2c. (yk) is a skipped block

sequence of (Xk), and hence it is a BCBS. By stability (xik
) is a BCBS.

Case 2: There exists m such that for all n ≥ m, lim infi ‖Pnxi‖ > δ for some

δ. Without loss of generality, we assume for all n, limi ‖Pnxi‖ > δ.

Since the range of each Pn is `2, by a standard diagonal argument we can

find a subsequence of (xi), which we denote by (xi) again, such that for each n,

(Pnxi)/‖Pnxi‖ is c1 equivalent to the unit vector basis of `2.

We claim that (xi) is BCBS. Otherwise, there exists a sequence (ai) such that

supm ‖
∑m

i=1 aixi‖ < ∞ but
∑

aixi does not converge. Note that for each n,

supm ‖
∑m

i=1 aiPnxi‖ < ∞ and hence
∑

aiPnxi converges. Thus
∑

i |ai|
2 con-

verges.

Since
∑

aixi does not converge, there exist an increasing sequence (np) and

ε > 0 such that
∥

∥

∥

∥

np
∑

np−1+1

aixi

∥

∥

∥

∥

> ε

but
( np

∑

np−1+1

|ai|
2

)1/2

≤ K4−p

where k = 1/(cc1).

Let zp−1 =
∑np

np−1+1 aixi.

We have

‖P1z1‖ =

∥

∥

∥

∥

n2
∑

n1+1

aiP1xi

∥

∥

∥

∥

≤

∥

∥

∥

∥

n2
∑

n1+1

ai
P1xi

‖P1xi‖
‖P1xi‖

∥

∥

∥

∥

≤ cc1

( n2
∑

n1+1

|ai|
2

)1/2

≤ 4−1.

Thus there exists u1, v1 such that z1 = u1 + v1 where u1 ∈ X1 and v1 ∈

[Xk]k≥2 with ‖u1‖ ≤ 4−1.

We can find l1 and y1 such that y1 ∈ [Xk]l1k=2 and ‖v1−y1‖ ≤ 4−1. Note that

‖z1 − y1‖ < 2−1.

Consider Pl1+2. Similar to above we have,

‖Pl1+2z2‖ ≤ cc1

( n3
∑

n2+1

|ai|
2

)1/2

≤ 4−2.
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We find u2, v2, y2 and a number l2 such that z2 = u2 + v2, u2 ∈ [Xk]l1+2
k=1 ,

‖u2‖ ≤ 4−2 and y2 ∈ [Xk]l2k=l1+3. We again have ‖z2 − y2‖ < 2−2.

Continuing, we obtain a sequence of increasing integers lp and vectors yp ∈

[Xk]
lp
lp−1+3 such that ‖zp − yp‖ < 2−p. But (yp) is a skipped block sequence of

(Xk) and, hence by (ii) is a BCBS. Thus there exists a d ≥ 1 such that (zp)p≥d is

a BCBS as well. Since for any k, supk ‖
∑d+k

p=d zp‖ < ∞ it follows that
∑

p=d zp

converges. This contradicts that ‖zp‖ > ε and the proof is complete.

Acknowledgements. The authors are thankful to the referee for his sugges-

tions which improved the presentation of the materials in this paper.

Added in proof. Professor Rosenthal pointed out to us that he had observed

before that in a Banach space with (PC)-property any semi-normalized basic

sequence has a subsequence which is Boundedly complete. However, this was

not published until recently in H. Rosenthal, Boundedly complete weak-Cauchy

basic sequences in Banach space with the PCP, J. Func. Anal. 253 (2007), no. 2,

772–781. (See corollary 4 there). Since (PC)-prpoperty is a 3-space property,

(see [19]) our Theorem 4.1 follows as a special case of his result.
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(Russian) The Theory of the Characteristics of Subspaces and its Applications “Vishcha

Shkola”, Kiev, 1980.

[19] H. Rosenthal, Weak*-Polish Banach spaces, Journal of Functional Analysis 76 (1988),

267–316.


